
Table of Contents
Best Practices...1

Streamlining File Transfers from Pleiades Compute Nodes to Lou.............................1
Increasing File Transfer Rates...2

Effective Use of Resources with PBS...3
Streamlining File Transfers from Pleiades Compute Nodes to Lou.............................3
Avoiding Job Failure from Overfilling /PBS/spool..4
Running Multiple Serial Jobs to Reduce Walltime...5
Checking the Time Remaining in a PBS Job from a Fortran Code.............................8

Memory Usage on Pleiades...10
Memory Usage Overview..10
Checking memory usage of a batch job using qps..12
Checking memory usage pf a batch job using qtop.pl...13
Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo".........14
Checking memory usage of a batch job using gm.x..15
Checking if a Job was Killed by the OOM Killer...17
How to get more memory for your job...19

Lustre on Pleiades...21
Lustre Basics...21
Pleiades Lustre Filesystems..24
Lustre Best Practices...27
Lustre Filesystem Statistics in PBS Output File...32

Best Practices

Streamlining File Transfers from Pleiades Compute Nodes
to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the outside
world, all file transfers to Lou within a PBS job must go through the front-ends (pfe[1-12],
bridge[1,2]) first.

Here is an example of what you can add to your PBS script to accomplish this:

Ssh to a front-end node (for example, bridge2) and create a directory on Lou where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via bridge[1,2] to transfer the files.2.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

Best Practices 1

Increasing File Transfer Rates

One challenge users face is moving large amounts of data efficiently to/from NAS across
the network. Often, minor system, software, or network configuration changes can increase
network performance an order of magnitude or more. This article describes some methods
for increasing data transfer performance.

If you are experiencing slow transfer rates, try these quick tips:

Transfer using the bridge nodes (bridge1, bridge2) instead of the Pleiades front-end
systems (PFEs). The bridge nodes have much more memory, along with 10-Gigabit
Ethernet interfaces to accommodate many large transfers. The PFEs often become
oversubscribed and cause slowness.

•

If using the scp command, make sure you are using OpenSSH version 5 or later.
Older versions of SSH have a hard limit on transfer rates and are not designed for
WAN transfers. You can check your version of SSH by running the command ssh -V.

•

For large files that are a gigabyte or larger, we recommend using BBFTP. This
application allows for transferring simultaneous streams of data and doesn't have the
overhead of encrypting all the data (authentication is still encrypted).

•

Online Network Testing Tools

The NAS PerfSONAR Service provides a custom website that that allows you to quickly
self-diagnose your remote network connection issues, and reports the maximum bandwidth
between sites, as well as any problems in the network path. Command-line tools are
available if your system does not have a web browser.

Test results are also sent to our network experts, who will analyze traffic flows, identify
problems, and work to resolve any bottlenecks that limit your network performance, whether
the problem is at NAS or a remote site.

One-on-One Help

If you still require assistance in increasing your file transfer rates, please contact the NAS
Control Room at support@nas.nasa.gov, and a network expert will work with you or your
local administrator one-on-one to identify methods for increasing your rates.

To learn about other network-related support areas. see also, End-to-End Networking
Services.

Increasing File Transfer Rates 2

http://npad.nas.nasa.gov/
mailto:support@nas.nasa.gov
http://www.nas.nasa.gov/hecc/services/networking_service.html
http://www.nas.nasa.gov/hecc/services/networking_service.html

Effective Use of Resources with PBS

Streamlining File Transfers from Pleiades Compute Nodes
to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the outside
world, all file transfers to Lou within a PBS job must go through the front-ends (pfe[1-12],
bridge[1,2]) first.

Here is an example of what you can add to your PBS script to accomplish this:

Ssh to a front-end node (for example, bridge2) and create a directory on Lou where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via bridge[1,2] to transfer the files.2.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

Effective Use of Resources with PBS 3

Avoiding Job Failure from Overfilling /PBS/spool

Before a PBS job is completed, its error and output files are kept in the /PBS/spool directory
of the first node of your PBS job. The space under /PBS/spool is limited, however, and
when it fills up, any job that tries to write to /PBS/spool may die. To prevent this, you should
not write large amount of contents in the PBS output/error files.

If your executable normally produces a lot of output to the screen, you should redirect its
output in your PBS script. For example:

#PBS ...
mpiexec a.out > output

To see the contents of your PBS output/error files before your job completes, follow the two
steps below:

Find out the first node of your PBS job using "-W o=+rank0" for qstat:1.

%qstat -u your_username -W o=+rank0
JobID User Queue Jobname TSK Nds wallt S wallt Eff Rank0
------------- ------ ------ -------- ---- --- -------- - -------- ---- ---------
868819.pbspl1 zsmith long ABC 512 64 5d+00:00 R 3d+08:39 100% r162i0n14

This shows that the first node is r162i0n14.

Log in to the first node and cd to /PBS/spool to find your PBS stderr/out file(s). You
can view the content of these files using vi or view.

2.

%ssh r162i0n14
%cd /PBS/spool
%ls -lrt
-rw------- 1 zsmith a0800 49224236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.OU
-rw------- 1 zsmith a0800 1234236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.ER

Avoiding Job Failure from Overfilling /PBS/spool 4

Running Multiple Serial Jobs to Reduce Walltime

DRAFT

This article is being reviewed for completeness and technical accuracy.

On Pleiades, running multiple serial jobs within a single batch job can be accomplished with
following example PBS scripts. The maximum number of processes you can run on a single
node will be limited to the core-count-per-node or the maximum number that will fit in a
given node's memory, whichever is smaller.

processor type cores/node available memory/node
 Harpertown 8 7.6 GB
 Nehalem-EP 8 22.5 GB
 Westmere-EP 12 22.5 GB

The examples below allow you to spawn serial jobs accross nodes using the mpiexec
command. Note that a special version of mpiexec from the mpi-mvapich2/1.4.1/intel module
is needed in order for this to work. This mpiexec keeps track of $PBS_NODEFILE and
places each serial job onto the CPUs listed in $PBS_NODEFILE properly. The use of the
arguments "-comm none" for this version of mpiexec is essential for serial codes or scripts.
In addition, to launch multiple copies of the serial job at once, the use of the
mpiexec-supplied $MPIEXEC_RANK environment variable is needed to distinguish
different input/output files for each serial job. This is demonstrated with the use of a
wrapper script "wrapper.csh" in which the input/output identifier (i.e., ${rank}) is calculated
from the sum of $MPIEXEC_RANK and an argument provided as input by the user.

Example 1:

This first example runs 64 copies of a serial job, assuming that 4 copies will fit in the
available memory on one node and 16 nodes are used.

serial1.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=16:ncpus=4
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -comm none -np 64 wrapper.csh 0

wrapper.csh:

Running Multiple Serial Jobs to Reduce Walltime 5

#!/bin/csh -f
@ rank = $1 + $MPIEXEC_RANK
./a.out < input_${rank}.dat > output_${rank}.out

This example assumes that input files are named input_0.dat, input_1.dat, ... and that they
are all located in the directory where the PBS script is submitted from (i.e.,
$PBS_O_WORKDIR). If the input files are in different directories, then wrapper.csh can be
modified appropriately to cd into different directories as long as the directory names are
differentiated by a single number that can be obtained from $MPIEXEC_RANK (=0, 1, 2, 3,
...). In addition, be sure that wrapper.csh is executable by you and you have the current
directory included in your path.

Example 2:

A second example provides the flexibility where the total number of serial jobs may not be
the same as the total number of CPUs requested in a PBS job. Thus, the serial jobs are
divided into a few batches and the batches are processed sequentially. Again, the wrapper
script is used where multiple versions of the program "a.out" in a batch are run in parallel.

serial2.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=10:ncpus=3
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

This will start up 30 serial jobs 3 per node at a time.
There are 64 jobs to be run total, only 30 at a time.

The number to run in total defaults here to 64 or the value
of PROCESS_COUNT that is passed in via the qsub line like:
qsub -v PROCESS_COUNT=48 serial2.pbs
#

the total number to run at once is automatically determined
at runtime by the number of cpus available.
qsub -v PROCESS_COUNT=48 -l select=4:ncpus=3 serial2.pbs
would make this 12 per pass not 30. no changes to script needed.

if ($?PROCESS_COUNT) then
 set total_runs=$PROCESS_COUNT
else
 set total_runs=64
endif

set batch_count=`wc -l < $PBS_NODEFILE`

set count=0

Running Multiple Serial Jobs to Reduce Walltime 6

while ($count < $total_runs)
 @ rank_base = $count
 @ count += $batch_count
 @ remain = $total_runs - $count
 if ($remain < 0) then
 @ run_count = $total_runs % $batch_count
 else
 @ run_count = $batch_count
 endif
 mpiexec -comm none -np $run_count wrapper.csh $rank_base
end

Running Multiple Serial Jobs to Reduce Walltime 7

Checking the Time Remaining in a PBS Job from a Fortran
Code

DRAFT

This article is being reviewed for completeness and technical accuracy.

During job execution, sometimes it is useful to find out the amount of time remaining for
your PBS job. This allows you to decide if you want to gracefully dump restart files and exit
before PBS kills the job.

If you have an MPI code, you can call MPI_WTIME and see if the elapsed walltime has
exceeded some threshold to decide if the code should go into the shutdown phase.

For example,

 include "mpif.h"

 real (kind=8) :: begin_time, end_time

 begin_time=MPI_WTIME()
 do work
 end_time = MPI_WTIME()

 if (end_time - begin_time > XXXXX) then
 go to shutdown
 endif

In addition, the following library has been made available on Pleiades for the same
purpose:

/u/scicon/tools/lib/pbs_time_left.a

To use this library in your Fortran code, you need to:

Modify your Fortran code to define an external subroutine and an integer*8 variable

 external pbs_time_left
 integer*8 seconds_left

1.

Call the subroutine in the relevant code segment where you want the check to be
performed

 call pbs_time_left(seconds_left)
 print*,"Seconds remaining in PBS job:",seconds_left

2.

Checking the Time Remaining in a PBS Job from a Fortran Code 8

 The return value from pbs_time_left is only accurate to within a minute or two.

Compile your modified code and link with the above library using, for example

LDFLAGS=/u/scicon/tools/lib/pbs_time_left.a

3.

Checking the Time Remaining in a PBS Job from a Fortran Code 9

Memory Usage on Pleiades

Memory Usage Overview

Running jobs on cluster systems such as Pleiades requires more attention to the memory
usage of a job than on shared memory systems. Below are a few factors that limit the
amount of memory available to your running job:

The total physical memory of a Pleiades compute node varies from 8 GB to 24 GB. A
small amount of the physical memory is used by the system kernel. Through PBS, a
job can access up to about 7.6 GB of an 8-GB node (Harpertown) and about 22.5
GB of a 24-GB node (Nehalem-EP and Westmere-EP).

•

The PBS prologue tries to clean up the memory used by the previous job that ran on
the nodes of your current running job. If there is a delay in flushing the previous job's
data from memory to disks (for example, due to Lustre issues), the actual amount of
free memory available to your job will be less.

•

I/O uses buffer cache that also occupies memory. If your job does a large amount of
I/O, the amount of memory left for your running processes will be less.

•

If your job uses more than 1 node, beware that the memory usage reported in the PBS
output file is not the total memory usage for your job: rather, it is the memory used in the
first node of your job. To help you get a more accurate picture of the memory usage of your
job, we provide a few in-house tools, listed below.

qtop.pl invokes top on the compute nodes of a job, and provides a snapshot of the
amount of used and free memory of the whole node and the amount used by each
running process. For more information, read the article Checking Memory Usage of a
Batch Job Using qtop.pl.

1.

qps invokes ps on the compute nodes of a job, and provides a snapshot of the
%mem used by its running processes. For more information, read the article
Checking Memory Usage of a Batch Job Using qps.

2.

qsh.pl can be used to invoke the command cat /proc/meminfo on the compute
nodes to provide a snapshot of the total and free memory in each node. For more
information, read the article Checking Memory Usage of a Batch Job Using qsh.pl
and "cat /proc/meminfo".

3.

gm.x and gm_post.x provide the memory high water mark for each process of your
job when the job finishes. For more information, read the article Checking Memory
Usage of a Batch Job Using qm.x.

4.

Memory Usage on Pleiades 10

These tools are installed under the directory /u/scicon/tools/bin. It is a good idea to include
this directory in your path by modifying your shell startup script so that you don't have to
provide the complete path name when using these tools. For example:

set path = ($path /u/scicon/tools/bin)

If your job runs out of memory and is killed by the kernel, this event was probably recorded
in system log files. Instructions on how to check whether this is the case are provided in the
article Checking if a Job was Killed by the OOM Killer.

If your job needs more memory, read the article How to Get More Memory for your Job for
possible approaches.

Memory Usage Overview 11

Checking memory usage of a batch job using qps

User Jeff West provided us with a Perl script called qps (available under /u/scicon/tools/bin)
that securely connects (via ssh) into each node of a running job and gets process status
(ps) information on each node.

Syntax:

pfe1% qps jobid
Example:

pfe1% qps 26130

*** Job 26130, User abc, Procs 1
NODE TIME %MEM %CPU STAT TASK
r1i0n14 10:17:13 2.8 99.9 RL ./a.out
r1i0n14 10:17:12 2.9 99.9 RL ./a.out
r1i0n14 10:17:18 2.9 99.9 RL ./a.out
r1i0n14 10:16:34 2.9 99.8 RL ./a.out
r1i0n14 10:17:11 2.9 99.9 RL ./a.out
r1i0n14 10:17:13 2.9 99.9 RL ./a.out
r1i0n14 10:17:12 2.9 99.9 RL ./a.out
r1i0n14 10:17:15 2.9 99.9 RL ./a.out

Note: The % memory usage by a process reported by this script is the percentage of
memory in the whole node. This script currently works only when users specify ncpus=8 in
the PBS resource request.

If you want to use qps to monitor the memory used by a job that requested a number of
CPUs other than 8, then make a copy of the qps script and change that single occurrence
of '8' on line 95 to the appropriate number of CPUs requested on each node.

Checking memory usage of a batch job using qps 12

Checking memory usage pf a batch job using qtop.pl

DRAFT

This article is being reviewed for completeness and technical accuracy.

A Perl script called qtop.pl (available under /u/scicon/tools/bin) was provided by Bob Hood
of the NAS staff. This script ssh's into the nodes of a PBS job and performs the command
top. The output of qtop.pl provides memory usage for the whole node and for each process.

Syntax:

pfe1% qtop.pl [-b] [-p n] [-P s] [-h n] [-H s] [-t s] [-N s] PBSjobid
 -b : (for running in background or batch) don't run 'resize' command
 -p n : show at most n processes per host
 -P s : show only procs in s, a comma-separated list of ranges
 e.g. -P 1,8-9
 -h : don't show the column header line
 -H s : show only header lines in s, comma-separated ranges
 e.g. -H 1-2,7
 e.g. -H 0 (don't show any lines)
 -t s : pass string s (must be one argument) to top command
 -n s : show output only from nodes in s, comma-separated ranges
 e.g. -n 0,2-3 (relative node #'s)
 -N s : show output only from nodes in s, a comma-separated list
 e.g. -N r1i1n14,r1i1n15 (absolute node #'s)

Example: to skip the header and list 8 procs per host

pfe1% qtop.pl -H 0 -p 8 996093
all nodes in job 996093: r184i2n12
r184i2n12 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 20027 zsmith 25 0 23.8g 148m 5320 R 101 0.6 5172:37 a.out
 20028 zsmith 25 0 23.8g 140m 5140 R 101 0.6 5173:35 a.out
 20029 zsmith 25 0 23.9g 286m 6640 R 101 1.2 5172:23 a.out
 20030 zsmith 25 0 23.9g 245m 5040 R 101 1.0 5171:18 a.out
 20031 zsmith 25 0 23.9g 265m 6040 R 101 1.1 5171:46 a.out
 20032 zsmith 25 0 23.9g 246m 5300 R 101 1.0 5171:00 a.out
 20033 zsmith 25 0 23.8g 158m 5476 R 101 0.7 5172:41 a.out
 20034 zsmith 25 0 23.8g 148m 5280 R 101 0.6 5173:02 a.out

Checking memory usage pf a batch job using qtop.pl 13

Checking memory usage of a batch job using qsh.pl and
"cat /proc/meminfo"

DRAFT

This article is being reviewed for completeness and technical accuracy.

A Perl script called qsh.pl (available under /u/scicon/tools/bin) was provided by NAS staff
member Bob Hood. This script ssh's into all the nodes used by a PBS job and runs a
command that you supply.

Syntax:

pfe1% qsh.pl pbs_jobid command

One good use of this script is to check the amount of free memory in the nodes of your PBS
job.

Example:

pfe1% qsh.pl 30329 "cat /proc/meminfo"

running "cat /proc/meminfo" on: r56i2n14 r56i2n15
r56i2n14 :
 MemTotal: 8079728 kB
 MemFree: 857936 kB
 Buffers: 0 kB
 Cached: 3775472 kB
...
r56i2n15 :
 MemTotal: 8079728 kB
 MemFree: 5840920 kB
 Buffers: 0 kB
 Cached: 784280 kB
...

Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo" 14

Checking memory usage of a batch job using gm.x

DRAFT

This article is being reviewed for completeness and technical accuracy.

NAS staff member Henry Jin created a tool called gm.x (available under /u/scicon/tools/bin)
that reports the memory usage at the end of a run from each process.

Add /u/scicon/tools/bin to your $PATH so that you can invoke gm.x without the full path.

Use the -h option to find out what types of memory usage can be reported:

pfe1%gm.x -h
gm - version 1.0
usage: gm.x [-opts] a.out [args]
 -hwm ; high water mark (VmHWM)
 -rss ; resident memory size (VmRSS)
 -wrss ; weighted memory size (WRSS)
 -v ; verbose flag
Default is by environment variable GM_TYPE (def=WRSS)

Note that the -rss option reports the last snapshot of resident set size usage captured by
the kernel. With the -wrss option, gm.x calls the system function
get_weighted_memory_size. More information about this function can be found from the
man page man get_weighted_memory_size.

gm.x can be used for either OpenMP or MPI applications (linked with either SGI's MPT,
MVAPICH or Intel MPI libraries) and you do not have to recompile your application for it. A
script called gm_post.x then takes the per process memory usage information and
computes the total memory used and the average memory used per process.

To use gm.x for an MPI code, add gm.x after the mpiexec options. For example:

mpiexec -np 4 gm.x ./a.out
Memory usage for (r1i1n0,pid=9767): 1.458 MB (rank=0)
Memory usage for (r1i1n0,pid=9768): 1.413 MB (rank=1)
Memory usage for (r1i1n0,pid=9770): 1.413 MB (rank=3)
Memory usage for (r1i1n0,pid=9769): 1.417 MB (rank=2)

mpiexec -np 4 gm.x ./a.out | gm_post.x
Number of nodes = 1
Number of processes = 4
Processes per node = 4
Total memory = 5.701 MB

Memory per node = 5.701 MB
Minimum node memory = 5.701 MB

Checking memory usage of a batch job using gm.x 15

Maximum node memory = 5.701 MB

Memory per process = 1.425 MB
Minimum proc memory = 1.413 MB
Maximum proc memory = 1.458 MB

If you use dplace to pin process, add gm.x after dplace:

mpiexec -np NN dplace -s1 gm.x ./a.out

Checking memory usage of a batch job using gm.x 16

Checking if a Job was Killed by the OOM Killer

If a PBS job runs out of memory and is killed by the Out-Of-Memory (OOM) killer of the
kernel, this event is likely (though not always) recorded in system log files. You can confirm
this event by checking some of the messages recorded in system log files, and then
increase your memory request in order to get your job running.

Follow the steps below to check whether your job has been killed by the OOM killer:

Find out when your job ran, what rack numbers were used by your job, and if the job
exited with the Exit_status=137 from the tracejob output of your job. For example:

pfe[1-12]% ssh pbspl1
pbspl1% tracejob -n 3 140001

where "3" indicates that you want to trace your job (PBS JOBID=140001), which ran
within the past 3 days.

1.

From the rack numbers (such as r2, r3, ...), you then grep messages that were
recorded in the messages file stored in the leader node of those racks for your
executable. For example, to look at messages for rack r2:

pfe[1-12]% grep abc.exe /net/r2lead/var/log/messages
Apr 21 00:32:50 r2i2n7 kernel: abc.exe invoked oom-killer:
gfp_mask=0x201d2, order=0, oomkilladj=-17

2.

Often, the Out-Of-Memory message doesn't make it into the messages file, but will
be recorded in a consoles file named by each individual node. For example, to look
for abc.exe invoking the OOM killer on node r2i2n7:

3.

pfe% grep abc.exe /net/r2lead/var/log/consoles/r2i2n7
abc.exe invoked oom-killer: gfp_mask=0x201d2, order=0, oomkilladj=0

Note that these messages do not have a timestamp associated with them, so you
will need to use an editor to view the file and look for the hourly time markers
bracketing when the job ran out of memory. An hourly time marker looks like this:

[-- MARK -- Thu Apr 21 00:00:00 2011]

It's also possible that a system process (such as, pbs_mom or ntpd) is listed as invoking
the OOM killer, but it is nevertheless direct evidence that the node had run out of memory.

Checking if a Job was Killed by the OOM Killer 17

If you want to monitor the memory use of your job while it is running, you can use the tools
listed in the article Memory Usage Overview.

In addition, NAS provides a script called pbs_oom_check. This script does the steps above
and parses the /var/log/messages on all the nodes associated with pbs_jobid, looking for an
instance of OOM killer. The script is available under /u/scicon/tools/bin and works best
when run on the host pbspl1.

Checking if a Job was Killed by the OOM Killer 18

http://www.nas.nasa.gov/hecc/support/kb/entry/216/

How to get more memory for your job

DRAFT

This article is being reviewed for completeness and technical accuracy.

If your job was terminated because it needed more memory than what's available in the
nodes that it ran on, consider the following:

Among the Harpertown nodes, the 64 nodes in rack 32 have 16 GB per node instead
of 8 GB per node. You can request running your job on rack 32 with the keyword
bigmem=true. For example, change

#PBS -lselect=1:ncpus=8

to

#PBS -lselect=1:ncpus=8:bigmem=true

•

Run your job on Nehalem-EP or Westmere nodes instead of Harpertown nodes. For
example, change

#PBS -lselect=1:ncpus=8:model=har

to

#PBS -lselect=1:ncpus=8:model=neh

or

#PBS -lselect=1:ncpus=8:model=wes

•

If all processes use about the same amount of memory and you can not fit 8
processes per node (for Harpertown or Nehalem-EP, or 12 processes per node for
Westmere-EP), reduce the number of processes per node and request more nodes
for your job. For example, change

#PBS -lselect=3:ncpus=8:mpiprocs=8:model=neh

to

#PBS -lselect=6:ncpus=4:mpiprocs=4:model=neh

•

For a typical MPI job where rank 0 does the I/O and uses a lot of buffer cache,
assign rank 0 to 1 node by itself. For example, change

•

How to get more memory for your job 19

#PBS -lselect=1:ncpus=8:mpiprocs=8:model=neh

to

#PBS
-lselect=1:ncpus=1:mpiprocs=1:model=neh+1:ncpus=7:mpiprocs=7:model=neh

Due to formatting issue, the above may appear as 2 lines. It should
really be just 1 line.

If you suspect that certain nodes that your job ran on had less total physical memory
than normal, report it to NAS Help Desk. Those nodes can be offlined and taken care
of by NAS staff. This prevents you and other users from using those nodes before
they are fixed.

•

For certain pre- or post-processing work that needs more than 22.5 GB of memory,
run it on the bridge nodes (bridge[1,2]) interactively. Note that jobs running on the
bridge nodes can not use more than 48 GB of memory. Also MPI applications that
use SGI's MPT library can not run on the bridge nodes.

•

For a multi-process or multi-thread job, if any of your processes/threads needs more
than 22.5 GB, it won't run on Pleiades. Run it on a shared memory system such as
Columbia.

•

How to get more memory for your job 20

Lustre on Pleiades

Lustre Basics

DRAFT

This article is being reviewed for completeness and technical accuracy.

A Lustre filesystem is a high-performance, shared filesystem (managed with the Lustre
software) for Linux clusters. It is highly scalable and can support many thousands of client
nodes, petabytes of storage and hundreds of gigabytes per second of I/O throughput.

Main Lustre components:

Metadata Server (MDS)

1 or 2 per filesystem; service nodes that manage all metadata operations such as
assigning and tracking the names and storage locations of directories and files on
the OSTs.

•

Metadata Target (MDT)

1 per filesystem; a storage device where the metadata (name, ownership,
permissions and file type) are stored.

•

Object Storage Server (OSS)

1 or multiple per filesystem; service nodes that run the Lustre software stack, provide
the actual I/O service and network request handling for the OSTs, and coordinate file
locking with the MDS. Each OSS can serve up to ~15 OSTs. The aggregate
bandwidth of a Lustre filesystem can approach the sum of bandwidths provided by
the OSSes.

•

Object Storage Target (OST)

multiple per filesystem; storage devices where the data in user files are stored.
Under Linux 2.6 (current OS on Pleiades), each OST can be up to 8TB in size.
Under SLES 11, each OST can be up to 16 GB in size. The capacity of a Lustre
filesystem is the sum of the sizes of all OSTs.

•

Lustre Clients

commonly in the thousands per filesystem; compute nodes that mount the Lustre
filesystem, and access/use data in the filesystem.

•

Striping

Lustre on Pleiades 21

A user file can be divided into multiple chunks and stored across a subset of the OSTs. The
chunks are distributed among the OSTs in a round-robin fashion to ensure load balancing.

Benefits of striping:

allows one to have a file size larger than the size of an OST•

allows one or more clients to read/write different parts of the same file at the same
time and provide higher I/O bandwidth to the file since the bandwidth is aggregated
over the multiple OSTs

•

Drawbacks of striping:

higher risk of file damage due to hardware malfunction•

increased overhead due to network operations and server contention•

There are default stripe configurations for each Lustre filesystem. However, users can set
the following stripe parameters for their own directories or files to get optimum I/O
performance:

stripe_size

the size of the chunk in bytes; specify with k, m, or g to use units of KB, MB, or GB,
respectively; the size must be an even multiple of 65,536 bytes; default is 4MB for all
Pleiades Lustre filesystems; one can specify 0 to use the default size.

1.

stripe_count

the number of OSTs to stripe across; default is 1 for most of Pleiades Lustre
filesystems (/nobackupp[10-60]); one can specify 0 to use the default count; one can
specify -1 to use all OSTs in the filesystem.

2.

stripe_offset

The index of the OST where the first stripe is to be placed; default is -1 which results
in random selection; using a non-default value is NOT recommended.

3.

Use the command for setting the stripe parameters:

pfe1% lfs setstripe -s stripe_size -c stripe_count -o stripe_offset
dir|filename

For example, to create a directory called dir1 with a stripe_size of 4MB and a stripe_count
of 8, do

pfe1% mkdir dir1

Lustre Basics 22

pfe1% lfs setstripe -s 4m -c 8 dir1

Also keep in mind that:

When a file or directory is created, it will inherit the parent directory's stripe settings.•

The stripe settings of an existing file can not be changed. If you want to change the
settings of a file, you can create a new file with the desired settings and copy the
existing file to the newly created file.

•

Useful Commands for Lustre

To list all the OSTs for the filesystem

pfe1% lfs osts

•

To list space usage per OST and MDT in human readable format for all Lustre
filesystems or for a specific one, for example, /nobackupp10:
pfe1% lfs df -h
pfe1% lfs df -h /nobackupp10

•

To list inode usage for all filesystems or a specific one, for example, /nobackupp10:
pfe1% df -i
pfe1% df -i /nobackupp10

•

To create a new (empty) file or set directory default with specified stripe parameters

pfe1% lfs setstripe -s stripe_size -c stripe_count -o
stripe_offset dir|filename

•

To list the striping information for a given file or directory

pfe1% lfs getstripe dir|filename

•

To display disk usage and limits on your /nobackup directory (for example,
/nobackupp10):

pfe1% lfs quota -u username /nobackupp10

or

pfe1% lfs quota -u username /nobackup/username

To display usage on each OST, add the -v option:

pfe1% lfs quota -v -u username /nobackup/username

•

Lustre Basics 23

Pleiades Lustre Filesystems

Pleiades has several Lustre filesystems (/nobackupp[10-60]) that provide a total of about 3
PB of storage and serve thousands of cores. These filesystems are managed under Lustre
software version 1.8.2.

Lustre filesystem configurations are summarized at the end of this article.

Which /nobackup should I use?

Once you are granted an account on Pleiades, you will be assigned to use one of the
Lustre filesystems. You can find out which Lustre filesystem you have been assigned to by
doing the following:

pfe1% ls -l /nobackup/your_username
lrwxrwxrwx 1 root root 19 Feb 23 2010 /nobackup/username -> /nobackupp30/username

In the above example, the user is assigned to /nobackupp30 and a symlink is created to
point the user's default /nobackup to /nobackupp30.

TIP: Each Pleiades Lustre filesystem is shared among many users. To get good I/O
performance for your applications and avoid impeding I/O operations of other users, read
the articles: Lustre Basics and Lustre Best Practices.

Default Quota and Policy on /nobackup

Disk space and inodes quotas are enforced on the /nobackup filesystems. The default soft
and hard limits for inodes are 75,000 and 100,000, respectively. Those for the disk space
are 200GB and 400GB, respectively. To check your disk space and inodes usage and
quota on your /nobackup, use the lfs command and type the following:

%lfs quota -u username /nobackup/username
Disk quotas for user username (uid xxxx):
 Filesystem kbytes quota limit grace files quota limit grace
/nobackup/username 1234 210000000 420000000 - 567 75000 100000 -

The NAS quota policy states that if you exceed the soft quota, an email will be sent to
inform you of your current usage and how much of your grace period remains. It is
expected that users will occasionally exceed their soft limit, as needed; however after 14
days, users who are still over their soft limit will have their batch queue access to Pleiades
disabled.

If you anticipate having a long-term need for higher quota limits, please send a justification
via email to support@nas.nasa.gov. This will be reviewed by the HECC Deputy Project
Manager for approval.

Pleiades Lustre Filesystems 24

mailto:support@nas.nasa.gov

For more information, see also, Quota Policy on Disk Space and Files.

NOTE: If you reach the hard limit while your job is running, the job will die prematurely
without providing useful messages in the PBS output/error files. A Lustre error with code
-122 in the system log file indicates that you are over your quota.

In addition, when a Lustre filesystem is full, jobs writing to it will hang. A Lustre error with
code -28 in the system log file indicates that the filesystem is full. The NAS Control Room
staff normally will send out emails to the top users of a filesystem asking them to clean up
their files.

Important: Backup Policy

As the names suggest, these filesystems are not backed up, so any files that are removed
cannot be restored. Essential data should be stored on Lou1-3 or onto other more
permanent storage.

 Configurations

In the table below, /nobackupp[10-60] have been abbreviated as p[10-60].

Pleiades Lustre Configurations
Filesystem p10 p20 p30 p40 p50 p60
of MDSes 1 1 1 1 1 1
of MDTs 1 1 1 1 1 1
size of MDTs 1.1T 1.0T 1.2T 0.6T 0.6T 0.6T
of usable inodes on
MDTs ~235x10^6 ~115x10^6 ~110x10^6 ~57x10^6 ~113x10^6 ~123x10^6

of OSSes 8 8 8 8 8 8
of OSTs 120 60 120 60 60 60
size/OST 7.2T 7.2T 3.5T 3.5T 7.2T 7.2T
Total Space 862T 431T 422T 213T 431T 431T
Default Stripe Size 4M 4M 4M 4M 4M 4M
Default Stripe Count 1 1 1 1 1 1

NOTE: The default stripe count and stripe size were changed on January 13, 2011. For
directories created prior to this change, if you did not explictly set the stripe count and/or
stripe size, the default values (stripe count 4 and stripe size 1MB) were used. This means
that files created prior to January 13, 2011 had those old default values. After this date,
directories without an explicit setting of stripe count and/or stripe size adopted the new
stripe count of 1 and stripe size of 4MB. However, the old files in that directory will retain
their old default values. New files that you create in these directories will adopt the new

Pleiades Lustre Filesystems 25

default values.

Pleiades Lustre Filesystems 26

Lustre Best Practices

Lustre filesystems are shared among many users and many application processes, which
causes contention for various Lustre resources. This article explains how Lustre I/O works,
and provides best practices fro improving application performance.

 How does Lustre I/O work?

When a client (a compute node from your job) needs to create or access a file, the client
queries the metadata server (MDS) and the metadata target (MDT) for the layout and
location of the file's stripes. Once the file is opened and the client obtains the striping
information, the MDS is no longer involved in the file I/O process. The client interacts
directly with the object storage servers (OSSes) and object storage targets (OSTs) to
perform the I/O operations such as locking, disk allocation, storage, and retrieval.

If multiple clients try to read and write the same part of a file at the same time, the Lustre
distributed lock manager enforces coherency so that all clients see consistent results.

Jobs being run on Pleiades content for shared resources in NAS's Lustre filesystem. The
Lustre server can only handle about 15,000 remote procedure calls (RPCs, inter-process
communications that allow the client to cause a procedure to be executed on the server)
per second. Contention slows the performance of your applications and weakens the
overall health of the Lustre filesystem. To reduce contention and improve performance,
please apply the examples below to your compute jobs, while working in our high-end
computing environment.

 Best Practices

Avoid using ls -l

The ls -l command displays information such as ownership, permission and size of
all files and directories. The information on ownership and permission metadata is
stored on the MDTs. However, the file size metadata is only available from the
OSTs. So, the ls -l command issues RPCs to the MDS/MDT and OSSes/OSTs for
every file/directory to be listed. RPC requests to the OSSes/OSTs are very costly
and can take a long time to complete for many files and directories.

- Use ls by itself if you just want to see if a file exists.

- Use ls -l filename if you want the long listing of a specific file.

•

Avoid having a large number of files in a single directory•

Lustre Best Practices 27

Opening a file keeps a lock on the parent directory. When many files in the same
directory are to be opened, it creates contention. It is better to split a huge number of
files (in the thousands or more) into multiple sub-directories to minimize contention.

Avoid accessing small files on Lustre filesystems

Accessing small files on the Lustre filesystem is not efficient. If possible, keep them
on an NFS-mounted filesystem (such as your home filesystem) or copy them from
Lustre to /tmp on each node at the beginning of the job and access them from there.

•

Use a stripe count of 1 for directories with many small files

If you have to keep small files on Lustre, be aware that stat operations are more
efficient if each small file resides in one OST. Create a directory to keep small files,
set the stripe count to 1 so that only one OST will be needed for each file. This is
useful when you extract source and header files (which are usually very small files)
from a tarfile.

pfe1% mkdir dir_name
pfe1% lfs setstripe -s 1m -c 1 dir_name
pfe1% cd dir_name
pfe1% tar -xf tarfile

If there are large files in the same directory tree, it may be better to allow them to
stripe across more than one OST. You can create a new directory with a larger stripe
count and copy the larger file to that directory. Note that moving files into that
directory with the mv command will not change the strip count of the files. Files must
be created in or copied to a directory to inherit the stripe count properties of a
directory.

pfe1% mkdir dir_count_4
pfe1% lfs setstripe -s 1m -c 4 dir_count_4
pfe1% cp file_count_1 dir_count_4

If you have a directory with many small files (less than 100MB) and a few very large
files (greater than 1GB), then it may be better to create a new subdirectory with a
larger stripe count. Store just the large files and create symbolic links to the large
files using the symlink command.

pfe1% mkdir bigstripe
pfe1% lfs setstripe -c 16 -s 4m bigstripe
pfe1% ln -s bigstripe/large_file large_file

•

Use mtar for creating or extracting a tar file

A modified gnu tar command, /usr/local/bin/mtar, is Lustre stripe aware and will
create tar files or extract files with appropriately sized stripe counts. Currently, the
number of streps is set to the number of gigabytes of the file.

•

Lustre Best Practices 28

Keep copies of your source on the Pleiades home filesystem and/or Lou

Be aware that files under /nobackup[p1,p2,p10-p60] are not backed up. Make sure
that you have copies of your source codes, makefiles, and any other important files
saved on your Pleiades home filesystem or on Lou, the NAS storage system.

•

Avoid accessing executables on Lustre filesystems

There have been a few incidents on Pleiades where users' jobs encountered
problems while accessing their executables on /nobackup. The main issue is that the
Lustre clients can become unmounted temporarily when there is a very high load on
the Lustre filesystem. This can cause a bus error when a job tries to bring the next
set of instructions from the inaccessible executable into memory.

Executables run slower when run from the Lustre filesystem. It is best to run
executables from your home filesystem on Pleiades. On rare occasions, running
executables from the Lustre filesystem can cause executables to be corrupted. Avoid
copying new executable over existing executables of the same within the Lustre
filesystem. The copy causes a window of time (about 20 minutes) where the
executable will not function. Instead, the executable should be accessed from your
home filesystem during runtime.

•

Increase the stripe_count for parallel writes to the same file

When multiple processes are writing blocks of data to the same file in parallel, I/O
performance is better for large files when the stripe_count is set to a larger value.
The stripe count sets the number of OSTs the file will be written to. By default, the
stripe count is set to 1. While this default setting provides for efficient access of
metadata�for example to support "ls -l"&emdash;large files should use stripe counts
of greater than 1. This will increase the aggregate I/O bandwidth by using multiple
OSTs in parallel instead of just one. A rule of thumb is to use a stripe count
approximately equal to the number of gigabytes in the file.

It is also better to make the stripe count be an integral factor of the number of
processes performing the write in parallel so that one achieves load balance among
the OSTs. For example, set the stripe count to 16 instead of 15 when you have 64
processes performing the writes.

•

Limit the number of processes performing parallel I/O

Given that the numbers of OSSes and OSTs on Pleiades are about a hundred or
fewer, there will be contention if a huge number of processes of an application are
involved in parallel I/O. Instead of allowing all processes to do the I/O, choose just a
few processes to do the work. For writes, these few processes should collect the

•

Lustre Best Practices 29

data from other processes before the writes. For reads, these few processes should
read the data and then broadcast the data to others.
Stripe align I/O requests to minimize contention

Stripe aligning means that the processes access files at offsets that correspond to
stripe boundaries. This helps to minimize the number of OSTs a process must
communicate for each I/O request. It also helps to decrease the probability that
multiple processes accessing the same file communicate with the same OST at the
same time.

One way to stripe-align a file is to make the stripe size the same as the amount of
data in the write operations of the program.

•

Avoid repetitive stat operations

Some users have implemented logic in their scripts to test for the existence of certain
files. Such tests generate stat requests to the Lustre server. When the testing
becomes excessive, it creates a significant load on the filesystem. A workaround is
to slow down the testing by adding sleep in the logic. For example, the following user
script tests the existence of the files WAIT and STOP to decide what to do next.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif
 end

When neither the WAIT nor STOP file exists, the loop ends up testing for their
existence as fast as possible (on the order of 5000 times per second). Adding a
sleep inside the loop slows down the testing.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif
sleep 15

•

Lustre Best Practices 30

 end

Avoid multiple processes opening the same file(s) at the same time

On Lustre filesystems, if multiple processes try to open the same file(s), some
processes will not able to find the file(s) and the job will fail.

The source code can be modified to call the sleep function between I/O operations.
This will reduce the occcurence of multiple access attempts to the same file from
different processes simultaneously.

 100 open(unit,file='filename',IOSTAT=ierr)
 if (ierr.ne.0) then
 ...

call sleep(1)
 go to 100
 endif

When opening a read-only file in Fortran, use ACTION='read' instead of the default
ACTION='readwrite'. The former will reduce contention by not locking the file.

open(unit,file='filename',ACTION='READ',IOSTAT=ierr)

•

Avoid repetitive open/close operations

Opening files and closing files incur overhead and repetitive open/close should be
avoided.

If you intend to open the files for read only, make sure to use ACTION='READ' in the
open statement. If possible, read the files once each and save the results, instead of
reading the files repeatedly.

If you intend to write to a file many times during a run, open the file once at the
beginning of the run. When all writes are done, close the file at the end of the run.

•

Reporting Problems

If you report performance problems with a Lustre filesystem, please be sure to include the
time, hostname, PBS job number, name of the filesystem, and the path of the directory or
file that you are trying to access.Your report will help us correlated issues with recorded
performance data to determine the cause of efficiency problems.

Lustre Best Practices 31

Lustre Filesystem Statistics in PBS Output File

For a PBS job that reads or writes to a Lustre file system, a Lustre filesystem statistics
block will appear in the PBS output file, just above the job's PBS Summary block.
Information provided in the statistics can be helpful in determining the I/O pattern of the job
and assist in identifying possible improvements to your jobs.

The statistics block lists the job's number of Lustre operations and the volume of Lustre I/O
used for each file system. The I/O volume is listed in total, and is broken out by I/O
operation size.

The following Metadata Operations statistics are listed:

open/close of files on the Lustre file system•
stat/statfs are query operations invoked by commands such as "ls -l"•
read/write is the total volume of I/O in gigabytes•

The following is an example of this listing:

==
LUSTRE Filesystem Statistics
--
 nbp10 Metadata Operations
 open close stat statfs read(GB) write(GB)
 1057 1058 1394 0 2 14
Read 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB
 9 3 1 0 1 0 3 2 319
Write 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB
 138 13 1 11 36 9 21 37 12479
__
Job Resource Usage Summary for 11111.pbspl1.nas.nasa.gov

 CPU Time Used : 00:03:56
 Real Memory Used : 2464kb
 Walltime Used : 00:04:26
 Exit Status : 0

The read and write operations are further broken down into buckets based on I/O block
size. In the example above, the first bucket reveals that nine data reads occurred in blocks
between 0 and 4 KB in size, three data reads ocurred with block sizes between 4 KB and 8
KB, and so on. The I/O block size data may be affected by library and system operations
and, therefore, could differ from expected values. That is, small reads or writes by the
program might be aggregated into larger operations, and large reads or writes might be
broken into smaller pieces. If there are high counts in the smaller buckets, you should
investigate the I/O pattern of the program for efficiency improvements.

Tips for Improving Lustre I/O

Lustre Filesystem Statistics in PBS Output File 32

See Lustre Best Practices for multiple tips to improve the Lustre I/O performance of your
jobs.

Lustre Filesystem Statistics in PBS Output File 33

	Table of Contents
	Best Practices
	Streamlining File Transfers from Pleiades Compute Nodes to Lou
	Increasing File Transfer Rates

	Effective Use of Resources with PBS
	Streamlining File Transfers from Pleiades Compute Nodes to Lou
	Avoiding Job Failure from Overfilling /PBS/spool
	Running Multiple Serial Jobs to Reduce Walltime
	Checking the Time Remaining in a PBS Job from a Fortran Code

	Memory Usage on Pleiades
	Memory Usage Overview
	Checking memory usage of a batch job using qps
	Checking memory usage pf a batch job using qtop.pl
	Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo"
	Checking memory usage of a batch job using gm.x
	Checking if a Job was Killed by the OOM Killer
	How to get more memory for your job

	Lustre on Pleiades
	Lustre Basics
	Pleiades Lustre Filesystems
	Lustre Best Practices
	Lustre Filesystem Statistics in PBS Output File

